

Low Voltage Industrial Fuse Links

IPD Industrial Products is an Australian owned distributor of a wide variety of low voltage electrical and automation products for the Australian Industry.

IPD Industrial Products traces its beginnings to the General Electric Company Ltd of England, founded in 1889. Over the years, the company integrated the major electrical businesses of GEC, English Electric, Marconi, Henley and A.E.I to comprise one of the most extensive and diverse electrical engineering and manufacturing organisations in the world.

In 1956, English Electric opened its operation at Regents Park in Sydney, and has provided employment and training to thousands of people in the Australian electrical industry. Today it remains as a much changed and diverse organisation, IPD Industrial Products, a 100% Australian owned, managed and operated company.

IPD Industrial Products delivers strong brand names and leading-edge developments, providing world class manufacturers a powerful presence in Australia. IPD Industrial Products is committed to offering the customer a technically compliant solutions based offering.

IPD Industrial Products designs and manufactures a large range of products specifically suited to the local environment. An in-house engineering team is employed to develop and test equipment, ensuring conformity to Australian Standards and the highest customer satisfaction.

Visit us at: www.ipdgroup.com.au

IPD Distributes the following brands:

IPD Group Ltd. © Copyright 2008

>>>> Product Overview

British Standard Fuse-links, Bolt-in type "T"

- General Purpose full range protection – Class gG and gM
- Two voltage ranges 415 and 660V AC
- Complies to BS88 Parts 1, 2, IEC 269 Parts 1 & 2, and AS 3269 Part 1 & 2
- Current ratings from 2A up to 1250A

Page 5

Clip-in BS88 Fuse-links,

- General Purpose full range protection Class gG and gM
- Complies to BS88 Part 6 and IEC 269
- Current ratings from 2A up to M80

Page 18

Utility Fuse-links, Bolt-in type "J"

- Fuse-link for the protection of over-head line networks and LV distribution feeder pillars.
- General purpose full range protection Class gU
- Complies to BS88 Part 5 and IEC 269
- Current ratings from 20A up to 800A

Page 20

DIN type NH fuse-links

- General Purpose fuse-links full range protection
- Conforms to IEC 269 and AS 3269
- Utilisation Category, gG @ 500V AC
- Current ratings from 6A up
- Also available in 690V AC

Page 22

Power Fuse-links Class "L"

- General Purpose fuse-links full range protection – Class "L"
- Conforms to UL and CSA
- Current ratings from 100A up to 6,000A

Page 25

The contents of BS88:Part 2:1988 (and the associated

IEC269-2 and AS2005.21.2) were taken into consideration

by the designers when the complete range of type 'T'

There are therefore no changes in the electrical characteristics of the fuse links detailed in this publication an important

point to note for those users who have approved equipment

Type 'T' fuse links meet all the requirements of BS88:

Part 2:1988 and this publication details changes

in terminology and practice resulting from the issue of

All references made refer to GEC and GE Red Spot fuse

fuse links were re-designed some time ago.

or engineered installations based on their use.

that standard.

links.

INTRODUCTION - BS88 TYPE T FUSE LINKS

AC Performance

ASTA 20 certified at 80kA from 415V to 660V, to BS88: Part 2:1988.

DC Performance

Up to 460V to BS88:Part 2:1988.

Protection of PVC insulated Cables

Class 'gG' ratings provide complete protection, and enable cables to be fully rated.

Discrimination

Type 'T' fuse links will discriminate with each other at fault levels up to 80kA, 415V when the ratio between 'major' and 'minor' current ratings is 1.6:1.

Motor Starting Ability

All type 'T' fuse links are suitable for use in motor circuits and have superior motor starting ability.

The availability of class 'gM' fuse links enhances this capability.

Motor Circuit Protection

Type 'T' fuse links combined with the contactors and relays of leading manufacturers, provide effective short circuit protection.

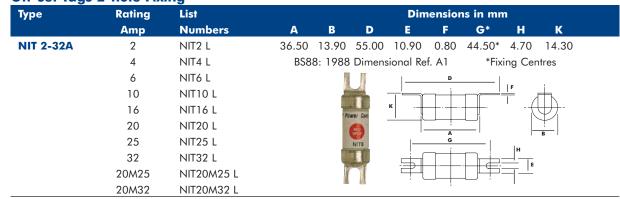
Energy Conservation

All type 'T' fuse links have low power loss values, well within the limits specified in BS88:Part 2:1988.

Approvals

Approved by leading authorities, including Lloyds, CEBG, and Ministry of Defence, as being made to recognise standards of quality assurance (including BS5750:Part 1:1987 and AS3902-1987).

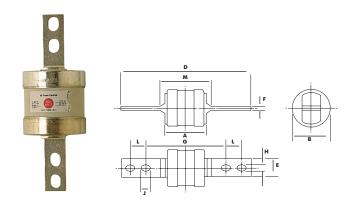
Туре	Ratings	Utilisation	BS88-2	Maximum	Voltage Rating
	Amp	Category	Dimension	AC	DC
415V Rang	le		Reference		
NITL	2 - 32	gG	A1	415	240
NITL	20M25, 20M32	gM	A1	415	240
TIAL	2 - 32	gG	A2	415	240
TIAL	32M35 - 32M63	gM	A2	415	240
TISL	35 - 100	gG	A3	415	240
TCPL	63 - 100	gG	A4	415	240
TCPL	100M125 - 100M200	gM	A4	415	240
TFPL	125 - 200	gG	-	415	240
TFPL	200M250 - 200M315	gM	-	415	240
TCL	80, 100	gG	B1	415	240
TFL	125 - 200	gG	B1	415	240
TFL	200M250 - 200M315	gM	B2	415	240
TKFL	250, 315	gG	В3	415	240
TKFL	315M400	gM	В3	415	240
TKML	250, 315	gG	-	415	240
TMFL	355, 400	gG	B4	415	240
TML	355, 400	gG	C1	415	240
TTML	450 - 630	gG	C2	415	240
TLML	670 - 800	gG	C3	415	240
660V Rang	je				
NIT	2-20	gG	A1	550	250
NIT	25, 32	gG	A1	440	250
NIT	20M25, 20M32	gM	A1	440	-
TIA	2-32	gG	A2	660	460
TIA	32M35 - 32M63	gM	A2	660	460
TIS	35-63	gG	A3	660	460
TIS	63M80, 63M100	gM	A3	660	-
TCP	80, 100	gG	A4	660	350
TCP	100M125 - 100M200	gM	A4	660	350
TFP	125-200	gG	-	660	350
TB	2-63	gG	-	660	460
TBC	2-63	gG	-	660	460
TC	80, 100	gG	B1	660	350
TF	125-200	gG	B2	660	350
TF	200M250	gM	B2	660	460
TF	200M315	gM	B2	550	-
TKF	250, 315	gG	В3	660	460
TKF	315M355	gM	В3	660	460
TKM	250, 315	gG	-	660	460
TMF	355, 400	gG	B4	660	460
TMF	400M450	gM	B4	660	460
TM	355, 400	gG	C1	660	460
TM	400M450	gM	C1	660	460
TMT	355-400	gG	-	660	460
TTM	450-630	gG	C2	660	450
TTM	630M670	gM	C2	660	450
TT	450-630	gG	-	660	450
TLM	670-800	gG	C3	660	350
TLT	670-800	gG	-	660	350
TLU	560-800	gG	-	660	350
TXU	1000, 1250	gG	D1	660	300


Notes: 'ASTA20 Certified' endorsement on a low voltage fuse link indicates that the design has been proved and Certified by ASTA to the relevant British Standard and that the fuse links are examined periodically under the ASTA surveillance scheme.

Phone: 1300 556 601

Off-set Tags 2-hole Fixing

Туре	Rating	List				Din	nensio	ns in mr	n _		
	Amp	Numbers	A	В	D	E	F	G*	Н	J	K
TIA 2-32A	2	TIA2L	55.00	23.00	84.00	8.70	1.20	73.00*	5.20	7.10	23.80
	4	TIA4L	BS8	8: 1988	Dimens	ional Re	f. A2	*Fix	ing Cen	tres	
	6	TIA6L									
	10	TIA10L						D	— _F	1	
	16	TIA16L				Τ'		$+\Box$		#	\
	20	TIA20L				к	-			- (\P)	た -
	25	TIA25L		27	CONTRACTOR STATES			A		B	
	32	TIA32L		100	C FLEE 180		1	G	—ı		
	_	_		The same	100		 	+n		н	
	32M35	TIA32M35L		0						E	
	32M40	TIA32M40L		9							
	32M50	TIA32M50L					,				
	32M63	TIA32M63L									
TIS 35 - 100A	35	TIS35L	55.00	23.00	84.00	8.70	1.20	73.00*	5.20	7.10	23.80
	40	TIS40L									
	50	TIS50L	BS8	8: 1088	Dimens	ional Re	f. A3	* Fix	king Cer	ntres	
	63	TIS63L									
	80	TIS80L									
	100	TIS100L									
	63M80	TIS63M80L	58.00	26.20	90.50	12.70	1.20	73.00*	5.20	-	27.80
	63M100	TIS63M100L	50.00	0 / 00	111.00	10.10	0.40	00.70*	0.70	11.00	07.50
TCP 63 - 100A	80 100	TCP80 TCP100	58.00	26.20	111.00	19.10	2.40	93.70*	8.70	11.90	27.50
	63	TCP63L	67.00	26 10	111.00	10.50	3.20	94.00*	11.00	8.70	38.50
	80	TCP80L	69.50		111.00		2.40	93.70*	8.70	11.90	34.90
	100	TCP100L	07.50	34.30	111.00	17.10	2.40	73.70	0.70	11.70	34.70
	100M125	TCP100M125						* Fix	king Cer	ntres	
	100M160	TCP100M160							9 00.	00	
	100M200	TCP100M200									
	100M125	TCP100M125L	67.00	36.10	111.00	19.50	3.20	94.00*	11.00	8.70	38.50
	100M160	TCP100M160L									
	100M200	TCP100M200L									
TFP 125 - 200	125	TFP125	70.00	34.50	111.00	19.10	2.40	93.70*	8.70	11.90	34.90
	160	TFP160	BS8	8: 1088	Dimens	ional Re	f. A4	* Fix	king Cer	ntres	
	200	TFP200									
	125	TFP125L	67.00	36.10	111.00	19.50	3.20	94.00*	11.00	8.70	38.50
	160	TFP160L									
	200	TFP200L									
	200M250	TFP200M150L	76.00	41.90	111.00	19.50	3.20	94.00*	11.00	8.70	44.00
	200M315	TFP200M315L									


Type		List			Dim	ension	in m	m			
Туре	Rating Amp	Numbers	A	В	Dim	ension: E	s in m F	m G*	н		M
TB 2-63A	2	TB2	58.00		111.90		1.60	96.90*	7.10	10.30	61.90
	4	TB4	50.00	20.20	111.70	12.70	1.00		ng Cen		01.70
	6	TB6				D				00	
	10	TB10				M	-1				1
	16	TB16					J)	F			F
	20	TB20	N.C.	-	\dashv) · (
	25	TB25	2 Now October 1999 (2)			À	لل ا		14		
	32	TB32	HIC PASE THE	1	1	G	-! !		В	- T	MF NLY
	35	TIB35				+)				
	40	TB40				+		. н	E		
	50	TB50		7		+) , , i				
	63	TB63		•		,					
TBC 2-63A	2	TBC2	58.00	26.20	128.70	14.30	1.60	111.00*	8.70	11.90	61.90
	4	TBC4						*Fixi	ng Cen	tres	
	6	TBC6									
	10	TBC10									
	16	TBC16									
	20	TBC20									
	25	TBC25									
	32	TBC32									
	35	TBC35									
	40	TBC40									
	50	TBC50									
	63	TBC63									
TC 80 & 100A	80	TC80	58.00	26.20	136.50	19.10	3.25	111.00	8.70	11.90	58.80
_	100	TC100									
	80	TC80L	68.50	34.00	136.50	19.10	3.30	111.00*	8.70	11.90	79.40
	100	TC100L			Dimens				ng Cen		
TF 125 - 200A	125	TF125	70.00	34.90	136.50	19.10	3.20	111.00*	8.70	11.90	79.40
	160	TF160									
_	200	TF200									
	125	TF125L						111.00*		11.90	79.40
	160	TF160L	BS8	8: 1088	Dimens	ional Ref	. B2	*Fixi	ng Cen	tres	
	200	TF200L									
	200M250	TF200M250									
-	200M315	TF200M315	74.00	47.00				0.4.00			7/00
	200M250	TF200M250L		41.90	111.00	19.50	3.20	94.00	11.00	87.00	/6.00
T/F 050 0150	200M315	TF200M315L		54.00	100.00	05.40	2.00	111.00*	0.70	11.00	
TKF 250 - 315A	250	TKF250L			138.00			111.00*		11.90	82.00
	315	TKF315L		ö: 1088	Dimens	ional Ket	. в2	*Fixi	ng Cen	tres	
	315M355	TKF315M355		50.10	100.00	04.00	4.00	111.00*	0.70	1 4 00	75.00
TVM 050 0150	315M400	TKF314M400			138.00			111.00*		14.00	75.00
TKM 250 - 315A	250	TKM250	//.00	54.00	160.20	25.40	3.20	133.40*	10.30	13.50	82.00
	315	TKM315	72.00	41.00	150.00	24.00	2 20	122.00*	10.20	1400	72.00
	250	TKM250L	/3.00	41.90	159.00	20.00	3.20	133.00*	10.30	14.00	/3.00
TME 255 4004	315	TKM315L	02.00	61.10	124 50	25.40	6 20	111 00*	0 70	11.00	QE 00
TMF 355 - 400A	355	TMF355						111.00*		11.90	03.80
	400	TMF400		o: ۱U88	Dimens	ional Ket	. D4	FIXI	ng Cen	ıres	
-	400M450	TMF400M450		50 10	120 00	26.00	1 00	111 00*	0.70	14.00	75.00
	355	TMF355L	/5.00	39.10	138.00	20.00	4.80	111.00*	8./0	14.00	/5.00
	400	TMF400L									

Note

Where dimensions differ between 415V (L type) & 660V types, both types are listed.

LIST NUMBERS AND DIMENSIONS

Central Tags 4-hole Fixing

Туре	Rating	List			Din	nensions	in m	m				
	Amp	Numbers	A	В	D	E	F	G*	н	J	L	M
TM 355 & 400A	355	TM355L	83.00	61.10	211.0	25.40	6.30	133.00*	10.30	11.90	25.40	95.00
Extended Motor	400	TM400L	BS8	8: 1988	Dimens	ional Ref	. C1	*Fixi	ng Cen	itres		
Range 400M450+	400M450	TM400M450										
TMT 355 & 400A	355	TMT355	83.00	61.10	255.40	25.40	6.30	165.00*	10.30	13.50	31.80	95.00
	400	TMT400						*Fixi	ng Cen	itres		
TTM 450-630A	450	TTM450L	81.80	76.20	209.60	25.40	6.30	133.00*	10.30	11.90	25.40	95.00
	500	TTM500L	BS8	8: 1988	Dimens	ional Ref	. C2	*Fixi	ng Cen	itres		
	560	TTM560L										
	630	TTM630L										
TT 450-630A	450	TT450	81.80	76.20	266.70	38.10	6.30	165.00*	10.30	15.10	31.80	108.00
	500	TT500						*Fixi	ng Cen	itres		
	560	TT560										
	630	TT630										
TLM 670-800A	670	TLM670L	88.10	82.50	209.60	25.40	9.50	133.00*	10.30	15.10	25.40	100.10
	710	TLM710L	BS8	8: 1988	Dimens	ional Ref	. C3	*Fixi	ng Cen	itres		
	750	TLM750L										
	800	TLM800L										
TLT 670-800A	670	TLT670	88.10	82.50	266.70	38.10	7.80	165.00*	10.30	15.10	31.80	114.30
	710	TLT710						*Fixi	ng Cen	itres		
	750	TLT750										
	800	TLT800										

Central Tags 4-hole Fixing

Туре	Rating	List				Dim	ensio	ns in mn	1			
	Amp	Numbers	A	В	D	E	F	G*	н	J	L	M
TLU 560-800A	560	TLU560	90.50	83.30	200.00	63.50	9.50	149.00*	13.50	15.90	31.80	101.60
	630	TLU630				ь		*Fix	ing Cen	tres		
	670	TLU670	0 0			<u> </u>		4				
	710	TLU710	1 2 16-1		-		F) -			
	750	TLU750	OR Promotions			AG	'	B	<u>/</u>			
	800	TLU800					. — к					
			• •									
					,							
TXU 1000-1250A	1000	TXU1000	88.90	101.60	200.00	63.50	9.50	149.00*	13.50	16.70	31.80	95.00
	1250	TXU1250	BS8	8: 1988	B Dimens	ional Re	f. D1	*Fix	ing Cen	tres		

Utilisation Categories 'gG' and 'gM'

Some of the fuse link types used in some European Countries have only partial range breaking capacity (ie, they interrupt short circuit fault currents, but are unable to interrupt overload currents safely). To distinguish these types from the much more widely used general purpose fuse links, the concept of 'utilisation category' has been introduced in the international standard IEC269.

Since AS2005 & BS88 are based upon IEC269, it includes the same utilisation classes, each of which is defined by a two letter code. The first letter indicates the breaking range of the fuse link, as follows:

'g' full range breaking capacity fuse link.

'a' partial range breaking capacity fuse link.

The second letter indicates utilisation category, as follows:

'G' Fuse link for general application, including the protection of motor circuits.

'M' Fuse link for protection of motor circuits.

The standards combine these letters to recognise three classes ie, gG, gM and aM.

All type 'T' fuse links are classified as either gG or gM, and so have a full range breaking capacity.

A class gM fuse link has a dual basis of current rating, the smaller one of which is its continuous rating (In), whilst the larger one is its rating with respect to its time/current characteristics (Ich) and is thus an indication of its ability to withstand motor starting surges.

The two ratings are separated by an 'M' in list numbers, eg, 32M63. A class gG fuse link has only one, continuous rating.

BS88:Part 2:1988 specifies a time/current zone for each current rating within which its published time/current characteristics must lie. The time/ current zone for a gM type is defined according to its larger current rating, and thus the characteristics of a 32M63 rating must fall within the same zone as a 63A class gG rating.

Class gM fuse links exist only to enable economies to be achieved in the size of equipment used in motor circuits, eg, 32M63 fuse links can be fitted in 32A fuse holders in a 15kW, 415V, direct on line motor circuit, instead of 63A gG fuse links in 63A fuse holders, because although the motor starting surge required the use of fuse links with 63A time/current characteristics, the motor FLC is less than 32A (about 28A).

It should therefore be noted that gM fuse links complement the standard range of ratings, ie, gG types are also used in many motor circuits, with gM ratings applied only when there is an economic advantage to be gained from their use.

IPD INDUSTRIAL PRODUCTS Phone: 1300 556 601 www.ipdgroup.com.au

CIRCUIT LOADING

Circuit Loading

The HRC fuse link selected for any circuit should have a continuous current rating not less than the full load current of the circuit.

Complete Cable Protection

A standard rating of type 'T' fuse link (classified as type 'gG' to BS88:Part 1:1988, and marked accordingly) will protect an associated pvc insulated cable against both overload and short circuit if its current rating (In) is equal to, or less than the current rating of the cable (I2). This is in accordance with rule 2.4.2.1. listed in AS3000-1991.

Short Circuit Energy Limitation

Type 'T' fuse links limit the peak current and energy let-through to circuit which experience major short circuit faults. This limitation is so great that equipment manufacturers exploit it to product economic designs which, when used in combination with type 'T' fuse links, can withstand very high fault levels. Such users have to prove their equipment under the worst possible conditions (ie. at maximum breaking capacity, at 110% rated voltage, very low power factor , and with faults initiated at most onerous points on the voltage wave), and they require relevant data from the fuse link manufacturer. For type 'T' fuse links this is given in the form of the cut-off current and l²t characteristics shown on pages 12 to 17 inclusive.

Protection of Cables against Short Circuit Faults

In some circuits (eg, motor circuits) it is not economical practice to match fuse link and cable ratings to provide complete cable protection in the manner described above, because the circuits produce significant over currents during transient conditions. In such cases the fuse links are chosen to withstand the transient conditions, and provide only short circuit protection to the associated cables and other circuit components, the necessary overload protection then being provided by other means. In a motor circuit, for example the contactor and its overload relays afford overload protection to motor windings and cable and the fuse links are chosen to protect all the circuit components against damage when a short circuit fault occurs (see section on motor circuit protection on page 10). The short circuit protection of cables is covered by Section 5 of AS3008.1-1989 and the table shows how Type T fuse links relate to this rule in protecting pvc insulated copper conductors.

Conductor cross sectional		Maximum current carrying capacity of copper conductors					
area	'Unenclosed' condition Rating as Column 6 of AS3008. 1-1989 Table 5	'Enclosed' condition Ratings as Column 8 of AS3008. 1-1989 Table 5	that can be used with this conductor				
mm²	Amp	Amp	Amp				
1.5	13	11	16				
1.5	17	14	20				
2.5	23	20	35				
4	31	26	50				
6	40	34	63				
10	56	47	80				
16	74	62	125				
25	105	87	200				
35	120	100	250				
50	145	125	355				
70	185	155	450				
95	220	185	560				
120	260	220	710				
150	300	250	800				
185	345	285	1000				
240	405	340	1250				

Notes:

- (1) Based on formula $I^2t=K^2S^2$ given in AS3008.1-1989, Clause 5.3 where:
 - I = current which causes fuse links to operate in 5 seconds
 - t = 5 seconds
 - K = constant of 111 for pvc insulated copper conductors of initial temp. 75°C and final temp. 160°C.
 - S = cross sectional area of conductor in mm²
- (2) For motor start fuse links, the larger of the dual current rating is applicable, eg, 160A for TCP100M160.
- (3) Fuse links below 16A ignored because conductor cross sectional areas is less than 1mm².

IPD INDUSTRIAL PRODUCTS Phone: 1300 556 601 www.ipdgroup.com.au

DISCRIMINATION BETWEEN FUSE LINKS

Discrimination Between Fuse Links In service, the short circuit fault conditions encountered are usually less exacting than those produced in proving tests on fuse links and associated equipment. AS2005.10-1988 & BS88 Part 1:1988 states that fuse links experience fault currents which produce pre-arcing times longer than 0.01 second in most cases, and on that basis fuse links complying with the standard are deemed to discriminate with each other when the ratio between the current ratings of 'major' and 'minor' fuse links is 1.6:1 (see Figure 1).

Whilst the AS2005 & BS88 statement is reasonable in relation to 240V applications fault currents in major installations can be much greater.

However, even in the latter cases conditions are less onerous than those encountered in test stations (in particular, the circuits are usually three phase with relatively high power factors).

In practice therefore, the I²t values of type 'T' fuse links are significantly less the ones listed on pages 12-15 and they will discriminate with each other at fault levels up to 80kA, 415V, if the relationship between 'major' and 'minor' ratings is as given in the table. In most cases the discrimination ratio is 1.6:1, or less, and this provides economic benefits in modern installations. Tests have been taken to prove this level of performance.

The above table also gives details of combinations which will discriminate at 415V, 550V and 660V. **Effect of High Enclosure Temperatures**

In accordance with AS2005.10-1988 & BS88:Part1:1988 type 'T' fuse links are suitable for use in ambient air temperatures (Ta) not exceeding 40° C with a mean value measured over 24 hours of not more than 35° C.

When fuse links are fitted in enclosures, it is the temperature within the enclosure (Te)* which determines whether it is necessary to derate fuse links. No derating is needed in following cases:

Figure 1

'Minor' fuse link rating	Minimum rating (Amp) of 'Major' fuse link that will discriminate with the 'minor' fuse link at the voltage shown at prospective currents up to 80kA							
Amp	415v	550v	660v					
800	1250	-	-					
750	1250	1250	-					
710	1250	1250	1250					
670	1250	1250	1250					
630	1000	1250	1250					
560	800	800	1000					
500	750	800	1000					
450	670	750	800					
400	630	670	750					
355	630	630	750					
315	500	500	630					
250	400	450	500					
200	315	400	400					
160	250	315	315					
125	200	200	250					
100	160	200	200					
80	125	160	160					
63	100	160	160					
50	80	100	125					
40	63	63	100					
35	50	63	80					
32	40	50	63					
25	40	40	40					
20	32	32	35					
16	25	25	32					

Nominal	Maximum load current					
Fuse		at t	hese flu	ıid env	ironment	
Rating		tem	peratu	res (Te))*	
Amp	55°	60°	65°	70°	75°	
80				75	70	
100				95	90	
125				120	110	
160				145	135	
200			190	180	170	
250			235	225	210	
315		300	285	270	255	
355		350	330	315	295	
400		400	380	360	340	
450		425	405	380	360	
500	475	450	425	400	380	
560	540	520	495	465	440	
630	600	570	540	510	480	
670	650	615	585	550	520	
710	700	665	630	595	560	
750	750	710	670	630	590	
800	760	720	680	640	600	
1000	950	900	850	800	750	
1250	1140	1070	1020	960	900	

^{*} Fluid environment temperature (Te) is the temperature inside the enclosure containing the fuse link.

All type 'T' fuse links have excellent ability to protect motor circuits. When selected in the manner shown below, they not only withstand motor starting surges and full load currents without deteriorating, but also provide superior short circuit protection to associated motor starter components. Leading manufacturers of motor starters can offer ASTA certified type 'c' co-ordination to Appendix C of BS4941:1979 (IEC292-1) and more recently type 2 co-ordination to IEC 947-4-1, by using 660V type 'T' fuse links in combination with their chosen contactors and overload relays.

Please consult IPD Industrial Products for further information on this subject.

Selecting HRC Fuse Links to Protect 3-Phase Motor Circuits

- **1.** Table 1 opposite gives motor full load currents at various voltages. In the absence of specific information obtain the motor FLC from this table.
- **2.** The motors are assumed to produce the starting conditions shown on Table 2.
- **3.** Choose the recommended fuse link for the motor FLC and starting condition from Table 3 (D.O.L. starting) or Table 4 (assisted starting).
- **4.** For certified type C and type 2 co-ordinated motor starters, 550 & 660V fuse links must be specified.

Table 1 Full Load Currents of Typical 3-Phase Induction Motors at Voltages Shown

Motor Rating							
kW	HP	220V	380V	415V	440V	550V	660V
0.37	0.5	2.0	1.15	1.05	1.0	8.0	0.7
0.55	0.75	2.7	1.6	1.5	1.4	1.1	0.9
0.75	1	3.9	2.3	2.0	1.9	1.5	1.3
1.1	1.5	4.7	2.8	2.5	2.4	1.9	1.6
1.5	2	6.5	3.8	3.5	3.3	2.6	2.2
2.2	3	9.3	5.4	5.0	4.7	3.8	3.2
3	4	12	7.1	6.5	6.1	4.9	4.1
4	5.5	15.4	9.0	8.4	7.9	6.4	5.3
5.5	7.5	20.7	11.9	11	10.3	8.2	6.9
7.5	10	28	16.1	14.4	14	11.2	9.3
11	15	39.1	23	21	19.8	15.8	13.2
15	20	52.8	30.5	28	26.4	21.1	17.6
18.5	25	66	38	35	33	26.4	22
22	30	77	45	41	39	31	26
30	40	103	60	55	52	42	35
37	50	128	75	69	65	52	43.3
45	60	151	87	80	75	60	50
55	75	185	107	98	92	74	62
75	100	257	148	136	128	102	85
90	120	308	180	164	154	123	102
110	150	370	214	196	185	148	123
132	175	426	247	226	213	170	142
150	200	500	292	268	252	202	168
160	215	-	300	275	260	207	173
200	270	-	391	358	338	270	225
240	320	-	467	428	404	323	269
280	375	-	533	488	460	368	307
300	400	-	573	525	495	396	330
320	425	-	587	538	507	406	338

Table 2 Assumed Starting Conditions								
Motor rating	Assisted start conditions							
Up to 1kW	5xFLC for 5 secs	2.5xFLC for 20 secs						
1.1 to 7.5kW	6xFLC for 10 secs							
7.6 to 75kW	7xFLC for 10 secs	3.5xFLC for 20 secs						
Greater than 75kW	6xFLC for 15 secs							

IPD INDUSTRIAL PRODUCTS Phone: 1300 556 601 www.ipdgroup.com.au

MOTOR CIRCUIT PROTECTION

Special motor conditions:

Suitable adjustments to the recommended ratings may be necessary if any of the following conditions occur singly or in combination:

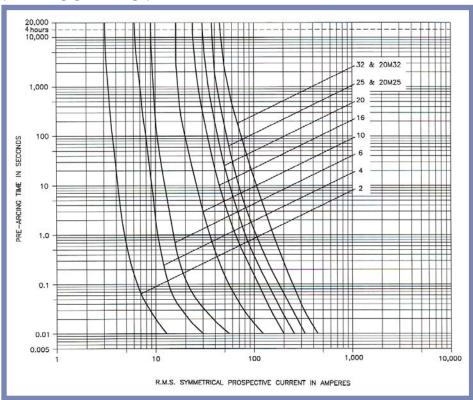
- a) Starting currents in excess of the assumed ones.
- b) Long run up times due to high inertia loads.
- c) Larger number of starts per operating cycle (the recommendations below allow for two starts in rapid succession and up to eight starts per hour).
- d) High enclosure temperature.

Table 3 Direct-on-line starting

Moto	r FLC	Recommended	Alternative
more		fuse link	motor circuit
		Type 'gG	rating
		Type 'gM'	ramig
An	np	Type giii	
FROM	то	AMP	
0	0.7	2	
0.8	1.4	4	
1.5	2.0	6	
2.1	3.0	10	
3.1	6.1	16	
6.2	9.0	20	
9.1	11.0	25	20M25+
11.1	14.4	32	20M32+
14.5	15.4	35	32M35
15.5	18.0	40	32M40
18.1	22.0	50	32M50
22.1	28.0	63	32M63
28.1	45	80	63M80
45.1	58	100	63M100
58.1	80	125	100M125
80.1	99	160	100M160
99.1	128	200	100M200
128.1	180	250	200M250
180.1	216	315	200M315*
216.1	270	355	315M355
270.1	328	400	315M400
328.1	385	450	400M450
385.1	430	500	
430.1	500	560	
500.1	560	630	
560.1	620	670	630M670

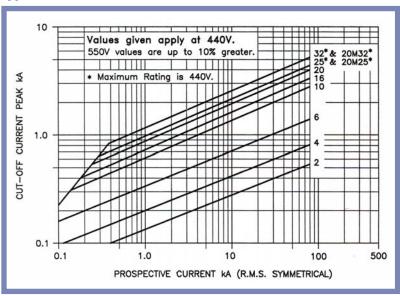
Table 4 Assisted starting**
(Star/delta, auto-transformer, etc.)

Motor FLC		Recommended	Alternative
		fuse link	motor circuit
		Type 'gG	rating
		Type 'gM'	
Amı	o		
FROM	то	AMP	
0	1.4	2	
1.5	2.1	4	
2.2	3.1	6	
3.2	5.5	10	
5.6	10	16	
10.1	14	20	
14.1	18	25	20M25
18.1	22	32	
22.1	28	35	32M35
28.1	32	40	32M40
32.1	40	50	
40.1	51	63	
51.1	80	80	
80.1	100	100	
100.1	125	125	
125.1	160	160	
160.1	200	200	
200.1	250	250	
250.1	315	315	
315.1	355	355	
355.1	400	400	
400.1	450	450	
450.1	500	500	
500.1	560	560	
560.1	630	630	
** These recomme	endations a	pply for ambient temp	eratures up to

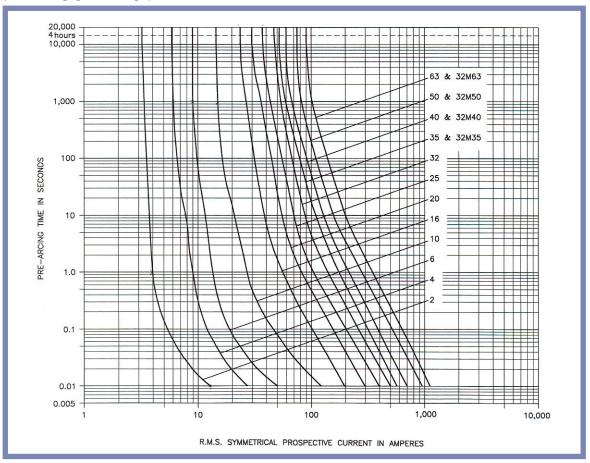

^{35°}C. At higher ambient temperatures, some fuse links need to be de-rated as indicated on page 9. The decreased rating then becomes the maximum motor FLC at that temperature, eg at 50°C a 630 Amp fuse link is used for motor FLC up to 540 Amps.

IPD INDUSTRIAL PRODUCTS Phone: 1300 556 601 www.ipdgroup.com.au

CHARACTERISTICS

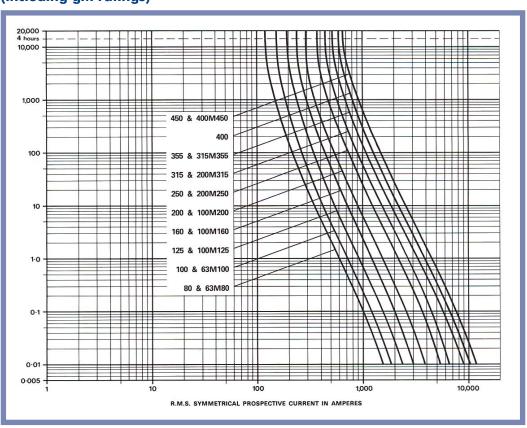

Type NIT Time/Current Characteristics (including gM ratings)

Type NIT I²t values


Current Rating	Pre-Arcing I ² t		al I²t ec) at
Amp	(A²sec)	415V	550V
2	2.2	5.4	31
4	7.2	18	70
6	21	60	400
10	100	280	1,000
16	300	850	2,000
20	540	1,000	2,500
25 & 20M25	900	3,000	-
32 & 20M32	1,100	4,000	-

Type NIT Cut-off Current Characteristics

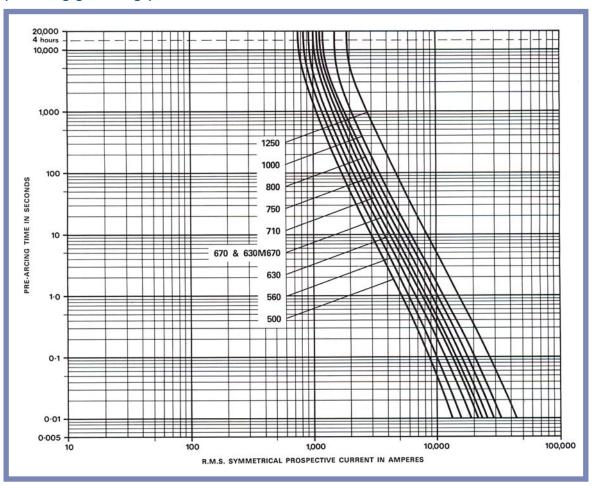
Type 'T' Time/Current Characteristics 2-63 Amp (including gM ratings)


Type 'T' l²t values 2-63 Amp

Current	Pre-Arcing		Total I²t	
Rating	l²t		(A² sec)	
Amp	(A²sec)	415V	550V	660V
2	2.2	5.5	7.4	15
4	7	18.5	23	50
6	21	60	80	150
10	100	280	370	700
16	250	550	740	1,800
20	540	1,100	1,400	2,500
25	850	1,850	2,300	3,700
32	1,600	3,400	5,400	8,700
35 & 32M35	2,700	5,300	8,000	15,000
40 & 32M40	4,000	8,500	11,000	20,500
50 & 32M50	6,300	13,500	18,500	28,000
63 & 32M63	11,000	24,000	36,000	50,000

⁻ See pages 16 & 17 for cut-off current characteristics.

Type 'T' Time/Current Characteristics 80-450 Amp (including gM ratings)

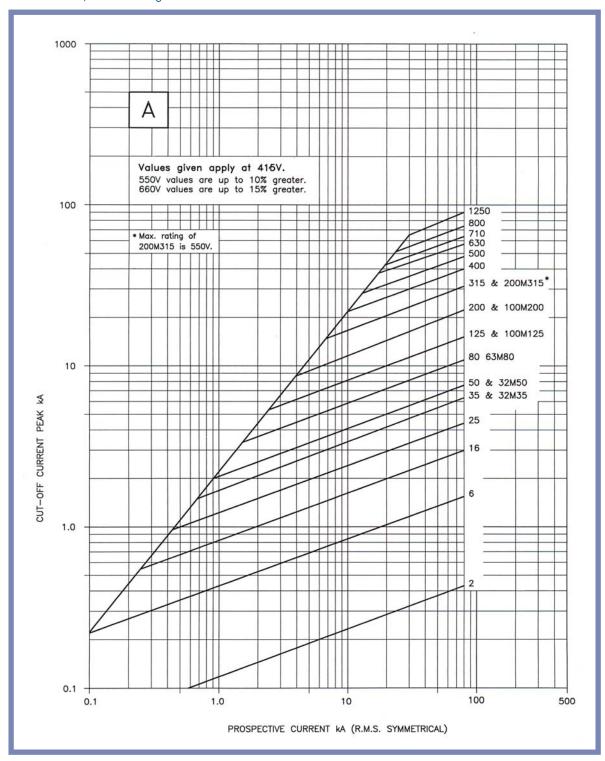


Type 'T' I²t values 80-450 Amp

Current	Pre-Arcing		Total I²t	
Rating	l²t	(4	A² sec x 10	³)
Amp	(A²sec x 10³)	415V	550V	660V
80 & 63M80	14	40	52	66
100 & 63M100	17	60	80	100
125 & 100M125	25	85	110	140
160 & 100M160	62	160	210	270
200 & 100M200	105	260	330	430
250 & 200M250	200	550	700	870
315 & 200M315	300	800	1,050	1,350
355 & 315M355	500	1,400	1,850	2,250
400	640	1,800	2,500	3,000
450 &400M450	800	2,200	3,000	3,800

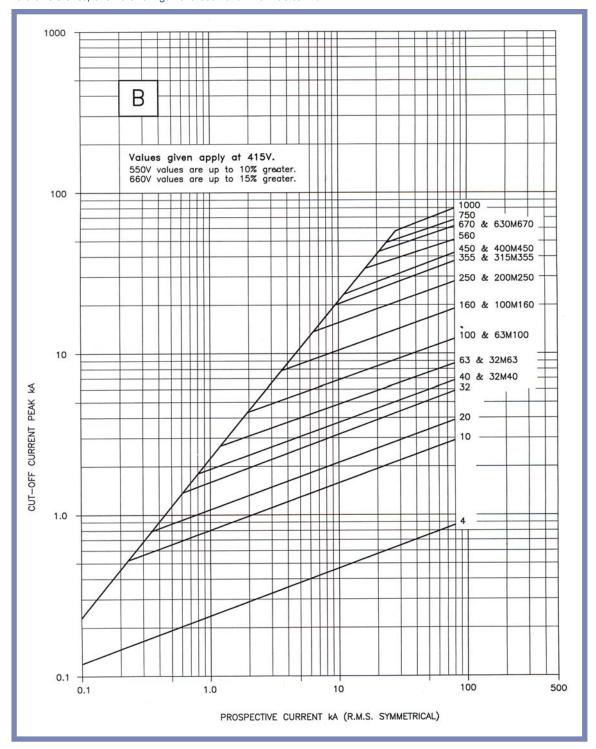
Type 'T' Time/Current Characteristics 500-1250 Amp (including gM ratings)

Type 'T' I2t values 500-1250 Amp


Current	Pre-Arcing	Total I²t		
Rating	l²t		(A² sec x 10³)	
Amp	(A²sec x 10³)	415V	550V	660V
500	1,050	3,000	3,800	4,500
560	1,400	3,800	4,250	5,400
630	2,000	5,200	6,000	7,500
670 & 630M670	2,400	6,400	7,400	9,000
710	2,800	7,000	8,000	9,700
750	3,700	7,500	10,000	12,000
800	4,400	9,600	12,500	15,000
1,000	5,300	12,000	14,500	17,500
1,250	10,000	20,000	24,000	29,000

Phone: 1300 556 601

Type 'T' Cut-off Current Characteristics 2-1250 Amp


To aid reference, alternate ratings have been shown on tables A & B.

Type 'T' Cut-off Current Characteristics 2-1250 Amp

To aid reference, alternate ratings have been shown on tables A & B.

Current Rating (A) 2-80
Voltage Rating ac (V) up to 440
Breaking Capacity ac (kA) 80

Breaking Capacity (AC)

The standard ratings are ASTA 20 certified to 80kA, 415 Volt*, to BS 88: Part 1 or Part 6: 1988 (IEC 269-1).

*SS types are certified at 16.5kA, 240 Volt, and the NS32M40 and ES63M80 at 80kA, 415 Volt.

Offset blade tag: Type SS

Current	Part	Max voltage
rating	Number	rating ac
2A	SS2	240
4A	SS4	240
6A	SS6	240
10A	SS10	240
16A	SS16	240
20A	SS20	240

Offset blade tag: Type NS

	0 /1	
Current	Part	Max voltage
rating	Number	rating ac
2A	NS2	415
4A	NS4	415
6A	NS6	415
10A	NS10	415
16A	NS16	415
20A	NS20	415
25A	NS25	415
32A	NS32	415
32M40A	NS32M40	415

Offset blade tag: Type ES

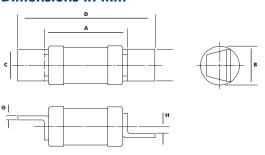
	J / I	
Current	Part	Max voltage
rating	Number	rating ac
40A	ES40	440
50A	ES50	440
63A	ES63	440
63M80A	ES63M80	415

Discrimination

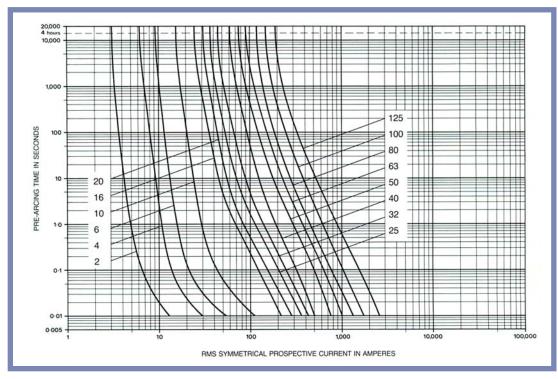
'SAFECLIP' fuse links will discriminate with each other at fault levels up to their rated a.c. performance when the ratio between 'major' and 'minor' current ratings is 2:1 (See Application Notes.)

Application Notes

Short circuit energy limitation and discrimination

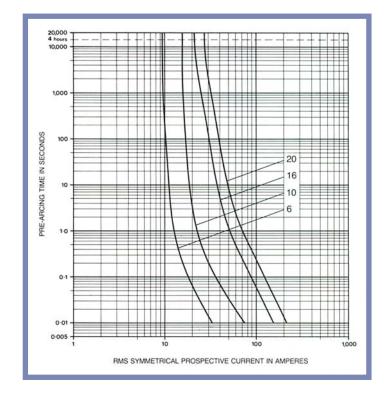

The designers of electrical equipment such as switches and contactors have to prove their products under the worst possible conditions (ie. At maximum breaking capacity, at 110% rated voltage, very low power factor, and with faults initiated at the most onerous points on the voltage wave), and they require relevant data from the fuse link manufacturer.

However, in service the short circuit fault conditions are usually less exacting than those produced in proving tests. In particular, the circuits are usually three-phase with relatively high power factor. In practice, therefore, the I²t values of 'SAFECLIP' fuse links are significantly less than those tabulated and they will discriminate with each other if the ratio between 'major' and 'minor' fuse links in series is 2:1. Where 'SAFECLIP' fuse links are used as the minor rating in series with a 'RED SPOT' range fuse link as the major rating then discrimination at 415/240 Volts will generally be achieved with a ratio of 1.6:1.


Offset blade tag: Safeclip

Туре	Rating	A	В	D	E	G	H
SS	2 - 20	25.00	14.50	51.00	11.00	0.80	3.60
NS	2 - 32M40	35.50	14.50	62.00	11.00	0.80	3.60
ES	40 - 63M80	39.00	17.50	69.00	15.00	1.25	3.60

Dimensions in mm


Type NS & ES

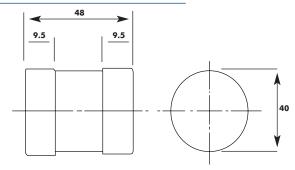
Current	Pre-Arcing	Total I²t	Total I²t
Rating	l²t	(A²sec)	(A²sec)
(Amp)	(A²sec)	at 415 Volt	at 440 Volt
2	2.2	9.5	11
4	7.2	30	33
6	22	92	100
10	170	650	700
16	200	800	950
20	360	1,200	1,500
25	650	2,500	2,900
32	600	3,500	4,050
40 & 32M40*	2,400	6,400	12,000
50	3,200	11,500	15,000
63	5,400	14,500	25,000
80 & 63M80*	6,000	24,000	38,000

 $^{^{\}ast}$ Maximum rating of 32M40 and 63M80 is 415 Volt.

Type SS

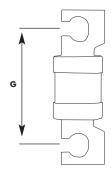
Current	Pre-Arcing	Total I²t
Rating	l²t	(A²sec)
(Amp)	(A²sec)	at 240 Volt
2	2	4
4	7.5	15
6	30	85
10	50	150
16	140	1,400
20	300	1,700

J - TYPE FUSES

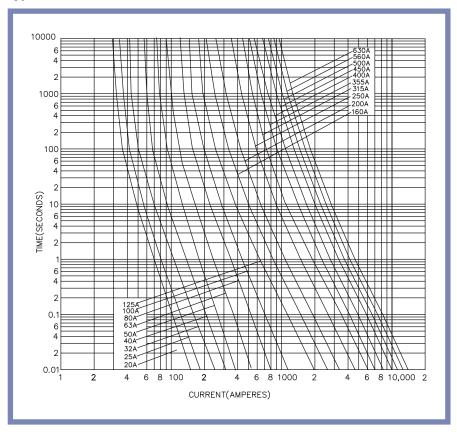

J-Type fuse-links are for use in AC electricity supply networks. They are installed in overhead line equipment, feeder pillars and link boxes. The range has been certified at a test recovery voltage of 110%. These fuse-links are therefore suitable for use on systems with voltages up to 457V AC.

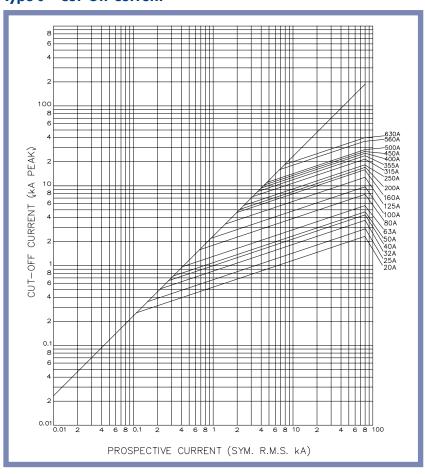
The rated and tested voltage also ensures that the range meet all the transitional voltage requirements.

415V AC BS88 1988 Part 5 Breaking Capacity 80kA ASTA 20 Certified Utilisation category gU


BS88: 1988 Part 5 Dimensions in mm

Туре	Rating	Part
	Amp	Number
JF20-315A	20	JF20
	32	JF32
	40	JF40
	50	JF50
	63	JF63
	80	JF80
	100	JF100
	125	JF125
	160	JF160
	200	JF200
	250	JF250
	315	JF315


BS88: 1988 Part 5 Dimensions in mm


Туре	Rating		Part		
			Number		
		Fix	ing Centre	s G	
	Amp	76mm	82mm	92mm	
JH, JP, JS	20	JH20	JP20		
	32	JH32	JP32		
	40	JH40	JP40		
	50	JH50	JP50		
	63	JH63	JP63		
	80	JH80	JP80	JS80	
	100	JH100	JP100	JS100	
	125	JH125	JP125	JS125	
	160	JH160	JP160	JS160	
	200	JH200	JP200	JS200	
	250	JH250	JP250	JS250	
	315	JH315	JP315	JS315	
	355		JP355	JS355	
	400		JP400	JS400	
	450		JP450	JS450	
	500		JP500	JS500	
	560		JP560	JS560	
	630		JP630	JS630	
	800			JS800	

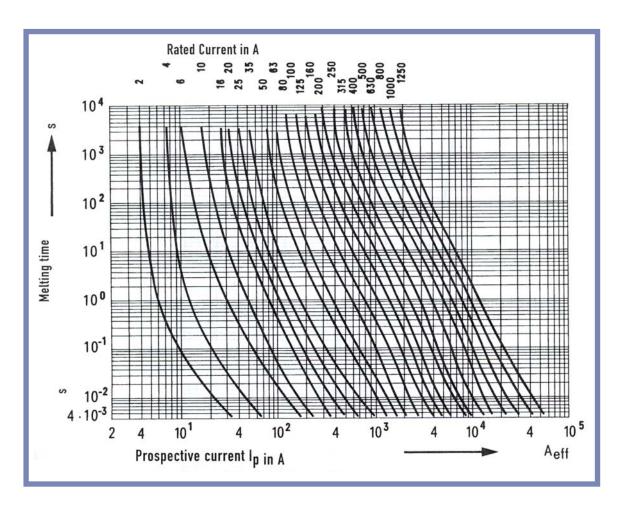
Type J - Time/Current

Type J - Cut-Off Current

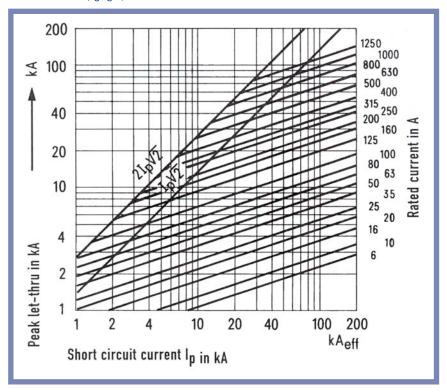
IPD INDUSTRIAL PRODUCTS

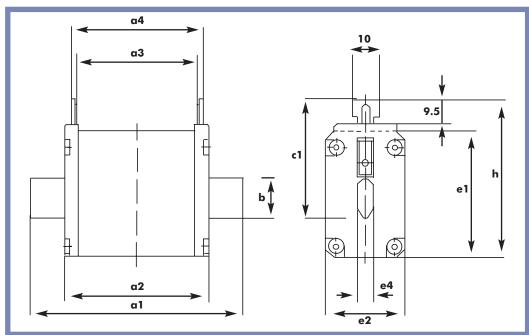
Phone: 1300 556 601

www.ipdgroup.com.au

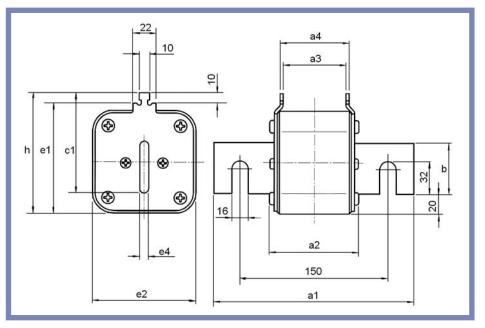

500V AC gL-gG Cd/Pb - Free

- Short circuit rating 120kA
- Conducting grip lugs
- Complies with IEC 60269-2, DIN 13620 parts 1 to 4, DIN VDE 0636 part 201
- Rated full range, general purpose for cable and line protection
- Size 4 for screw contact type base (NH4BASE)
- Size 4A fuses available for disconnect type mountings
- Other ratings available


Size	Rated	Rated	Power		
	Current	DC voltage	Losses	Catalogue	Part
	(A)	(V DC)	(W)	Number	Number
	6		1.6	NHG00-006	D235661
	10		1.1	NHG00-010	E235662
	16		1.8	NHG00-016	F235663
	20		2.4	NHG00-020	G235664
	25		2.4	NHG00-025	H235665
000/C00	32	250	2.7	NHG00-032	J235666
	35	250	3.0	NHG00-035	K235667
	40		3.4	NHG00-040	L235668
	50		3.9	NHG00-050	M235669
	63		4.7	NHG00-063	N235670
80 100 00 125 250	5.7	NHG00-080	P235671		
	100		6.7	NHG00-100	Q235672
00	125	250	8.4	NHG00-125	R235673
	160		10.6	NHG00-160	S235674
	63		6.2	NHG1-063	F235962
1	80		7.1	NHG1-080	B235682
	100		8.7	NHG1-100	C235683
	125	440	11.0	NHG1-125	D235684
	160		11.7	NHG1-160	E235685
	200		14.5	NHG1-200	F235686
	250		19.7	NHG1-250	H235688
2	125		10.6	NHG2-125	J235689
	160		11.9	NHG2-160	K235690
	200		14.0	NHG2-200	L235691
2	250	440	19.1	NHG2-250	N235693
	315		24.0	NHG2-315	Q235695
	355		26.2	NHG2-355	R235696
	400		30.2	NHG2-400	S235697
	500		35.6	NHG2-500	T228522
	315		22.4	NHG3-315	T235698
	355	440	23.5	NHG3-355	V235699
3	400	110	30.1	NHG3-400	W235700
	500		44.0	NHG3-500	Z235703
	630	250	47.5	NHG3-630	A235704
	800	-30	53.2	NHG3-800	V228523
	500		35.0	NHG4-500	X216542
	630		44.0	NHG4-630	W217576
4	800	440	70.0	NHG4-800	E218090
4	1000		85.0	NHG4-1000	H201694
	1250		93.0	NHG4-1250	C213994
	800		70	NHG4a-800	Y211437
4a	1000	350	83.3	NHG4a-1000	A219650
	1250		110.0	NHG4a-1250	J200637
				·	


Peak let-thru current data

Size 000 to 4/4a, gl-gG, - 500V



Dimensions size 4

nt a1 G with non-iso		a3	a4	b	c1	- 4	_	_	_				
G with non-iso	lated a				<u> </u>	e1	e2	e4	h				
Standard 500V gG with non-isolated gripping lugs SIZE 000 2-100A 79.0 52.0 45.5 49.5 15.0 35.0 40.5 20.8 6.0 5													
79.0	52.0	45.5	49.5	15.0	35.0	40.5	20.8	6.0	52.5				
50A 79.0	52.8	45.0	50.0	15.0	35.0	47.5	29.5	6.0	59.5				
A 135.0	70.8	63.0	68.0	15.0	40.0	47.5	29.5	6.0	64.5				
iOA 135.0	70.8	63.0	68.0	20.0	40.0	52.5	39.5	6.0	64.5				
iOA 150.0	72.3	63.0	68.0	20.0	48.0	52.5	39.5	6.0	72.5				
00A 150.0	72.3	63.0	68.0	26.0	48.0	60.0	51.0	6.0	72.0				
00A 150.0	72.3	63.0	68.0	26.0	60.0	60.0	51.0	6.0	83.5				
00A 150.0	72.3	63.0	68.0	33.0	60.0	74.0	70.0	6.0	86.0				
250A 200.0	85.0	62.0	68.0	49.0	86.0	108.0	90.0	8.0	117.5				
250A 200.0	85.0	84.0	90.0	49.0	86.0	108.0	90.0	6.0	117.5				
	50A 79.0 50A 135.0 50A 135.0 50A 150.0 50A 150.0 50A 150.0 50A 150.0 50A 150.0 50A 250.0	500A 79.0 52.8 0A 135.0 70.8 50A 135.0 70.8 50A 150.0 72.3 00A 150.0 72.3 00A 150.0 72.3 00A 150.0 72.3 20A 150.0 72.3 250A 200.0 85.0	500A 79.0 52.8 45.0 0A 135.0 70.8 63.0 50A 135.0 70.8 63.0 50A 150.0 72.3 63.0 00A 150.0 72.3 63.0 00A 150.0 72.3 63.0 00A 150.0 72.3 63.0 00A 150.0 72.3 63.0 250A 200.0 85.0 62.0	60A 79.0 52.8 45.0 50.0 0A 135.0 70.8 63.0 68.0 50A 135.0 70.8 63.0 68.0 50A 150.0 72.3 63.0 68.0 00A 150.0 72.3 63.0 68.0 250A 200.0 85.0 62.0 68.0	50A 79.0 52.8 45.0 50.0 15.0 0A 135.0 70.8 63.0 68.0 15.0 50A 135.0 70.8 63.0 68.0 20.0 50A 150.0 72.3 63.0 68.0 20.0 50A 150.0 72.3 63.0 68.0 26.0 50A 150.0 72.3 63.0 68.0 26.0 50A 150.0 72.3 63.0 68.0 26.0 50A 150.0 72.3 63.0 68.0 33.0 20A 150.0 72.3 63.0 68.0 33.0 250A 200.0 85.0 62.0 68.0 49.0	60A 79.0 52.8 45.0 50.0 15.0 35.0 0A 135.0 70.8 63.0 68.0 15.0 40.0 50A 135.0 70.8 63.0 68.0 20.0 40.0 50A 150.0 72.3 63.0 68.0 20.0 48.0 50A 150.0 72.3 63.0 68.0 26.0 48.0 50A 150.0 72.3 63.0 68.0 26.0 60.0 50A 150.0 72.3 63.0 68.0 26.0 60.0 50A 150.0 72.3 63.0 68.0 33.0 60.0 50A 250A 200.0 85.0 62.0 68.0 49.0 86.0	60A 79.0 52.8 45.0 50.0 15.0 35.0 47.5 0A 135.0 70.8 63.0 68.0 15.0 40.0 47.5 50A 135.0 70.8 63.0 68.0 20.0 40.0 52.5 50A 150.0 72.3 63.0 68.0 20.0 48.0 52.5 50A 150.0 72.3 63.0 68.0 26.0 48.0 60.0 50A 150.0 72.3 63.0 68.0 26.0 60.0 60.0 50A 150.0 72.3 63.0 68.0 33.0 60.0 74.0 250A 200.0 85.0 62.0 68.0 49.0 86.0 108.0	60A 79.0 52.8 45.0 50.0 15.0 35.0 47.5 29.5 0A 135.0 70.8 63.0 68.0 15.0 40.0 47.5 29.5 50A 135.0 70.8 63.0 68.0 20.0 40.0 52.5 39.5 50A 150.0 72.3 63.0 68.0 20.0 48.0 52.5 39.5 00A 150.0 72.3 63.0 68.0 26.0 48.0 60.0 51.0 00A 150.0 72.3 63.0 68.0 26.0 60.0 60.0 51.0 00A 150.0 72.3 63.0 68.0 33.0 60.0 74.0 70.0 250A 200.0 85.0 62.0 68.0 49.0 86.0 108.0 90.0	60A 79.0 52.8 45.0 50.0 15.0 35.0 47.5 29.5 6.0 0A 135.0 70.8 63.0 68.0 15.0 40.0 47.5 29.5 6.0 50A 135.0 70.8 63.0 68.0 20.0 40.0 52.5 39.5 6.0 50A 150.0 72.3 63.0 68.0 20.0 48.0 52.5 39.5 6.0 00A 150.0 72.3 63.0 68.0 26.0 48.0 60.0 51.0 6.0 00A 150.0 72.3 63.0 68.0 26.0 60.0 60.0 51.0 6.0 00A 150.0 72.3 63.0 68.0 33.0 60.0 74.0 70.0 6.0 250A 200.0 85.0 62.0 68.0 49.0 86.0 108.0 90.0 8.0				

PUT THE HIGHEST CURRENT-LIMITATION . . . AT YOUR SERVICE.

Amp-trap 2000® A4BQ fuses are 20% more current limiting than any other Class L fuse on the market. When correctly coordinated, they bring a superior level of protection to service entrance equipment. Downstream circuit components have maximum protection against short circuit let-thru current. A4BQ's built-in, 4-second time delay characteristic (at 500% of rated current) accommodates harmless inrush currents with no nuisance opening.

Features / Benefits

Fastest operation under short circuit conditions: Let-thru currents are typically 20% lower with a corresponding let-thru energy (clearing l^2t) up to 40% lower than the next fastest Class L fuse.

Time delay for high inrush loads such as motors and transformers, without nuisance opening. **300kA interrupting rating** - self-certified, UL witnessed tests.

Most current limiting for lowest peak letthru current; even at fault currents up to 300kA.

Pure silver links ensure lowest let-thru current and longer fuse life.

Easy 2-to-1 selectivity for prevention of nuisance shutdowns and "blackouts:

Rejection-style design prevents replacements errors.

High-visibility orange label gives instant recognition.

Reduced inventory because A4BQ can replace all older types of Class L fuses now in service.

Metal-embossed date and ref number for traceability and lasting identification.

Fibreglass body provides dimensional stability in harsh industrial settings

High-grade silica filler ensures fast arc qenching.

Ratings

AC: 100 to 6000A

600VAC, 200kA I.R. (self certified for 600VAC, 300kA I.R., UL witnessed)

4-second delay at 500% rating

Note: 100-600A ratings are non-listed

DC: 601 to 3000A 500VDC, 100kA I.R.

Highlights:

Time Delay

Industry's Most

Current-Limiting

Class L Fuse

Pure Silver Elements

AC & DC Rated

Safety Note: Class L fuses are dimensioned for one-way interchangeability. A Class L fuse of any lower ampere rating can be substituted for a give Class L fuse.

*Note UL Listed or CSA Certified

Applications:

Mains, Feeders

Large Motors

Lighting, Heating & General Loads

Circuit Breaker Back-up

DC Rate: UPS DC Links, Battery Disconnects, Other DC Applications

Approvals:

UL Listed to Standard

248-10 (601-6000A)

DC Listed to UL Standard

198L (601-3000A)

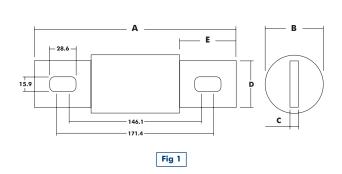
CSA Certified to Standard C22.2 No.

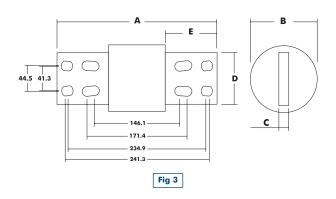
248.10 (601-6000A)

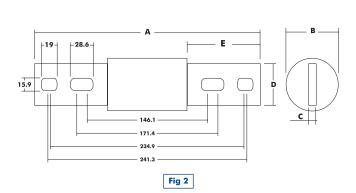
IEC 269-2-1

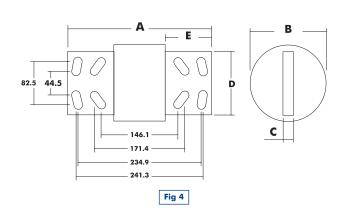
Phone: 1300 556 601

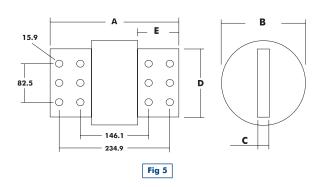
IPD INDUSTRIAL PRODUCTS


www.ipdgroup.com.au




CLASS L POWER FUSES

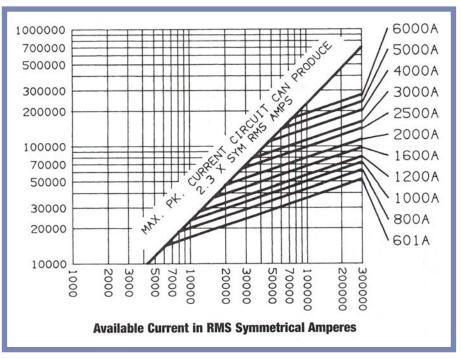

Standard Fuse Ampere Ratings


Ampere	Catalog	Ampere	Catalog	Ampere	Catalog	Ampere	Catalog
Rating	Number	Rating	Number	Rating	Number	Rating	Number
100	A4BQ100	500	A4BQ500	1000	A4BQ1000	2000	A4BQ2000
150	A4BQ150	600	A4BQ600	1200	A4BQ1200	2500	A4BQ2500
200	A4BQ200	601	A4BQ601	1350	A4BQ1350	3000	A4BQ3000
250	A4BQ250	650	A4BQ650	1400	A4BQ1400	3500	A4BQ3500
300	A4BQ300	700	A4BQ700	1500	A4BQ1500	4000	A4BQ4000
350	A4BQ350	750	A4BQ750	1600	A4BQ1600	5000	A4BQ5000
400	A4BQ400	800	A4BQ800	1800	A4BQ1800	6000	A4BQ6000
450	A4BQ450	900	A4BQ900				

AMPERE	Figure	Α	В	C	D	E
RATING	(Fig)	mm	mm	mm	mm	mm
100-600*	1	219.0	51.0	8.0	41.0	61.0
601-800	1	219.0	63.5	9.5	50.8	61.0
801-1200	2	273.0	63.5	9.5	50.8	88.0
1201-1600	2	273.0	76.2	11.1	60.3	88.0
1601-2000	2	273.0	88.9	12.7	69.8	88.0
2001-2500	3	273.0	114.3	19.0	88.9	88.0
2501-3000	3	273.0	127.0	19.0	101.6	88.0
3001-4000	4	273.0	146.1	19.0	120.7	88.0
4001-5000	5	273.0	158.8	25.4	133.3	88.0
5001-6000	5	273.0	181.0	25.4	146.1	88.0

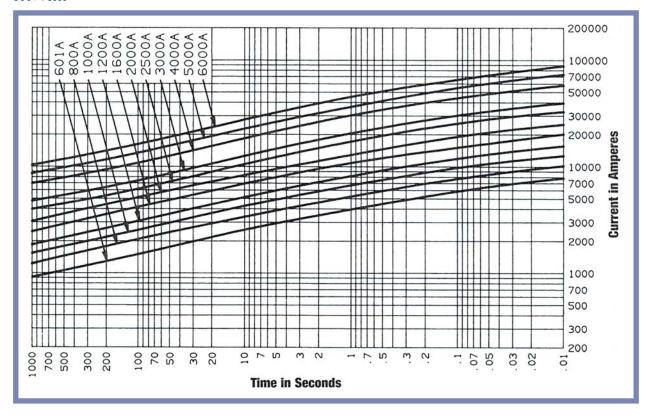
Available																						
Fault	60	1	80	0	10	00	120	00	16	00	20	00	25	00	30	00	40	00	50	00	60	00
RMS AMPS	RMS	Iр	RMS	lр	RMS	lр	RMS	Iр	RMS	Iр	RMS	lр	RMS	lр	RMS	lр	RMS	lр	RMS	Iр	RMS	Iр
10,000	7.4	17	8.7	20	10	23	10	23	10	23	10	23	10	23	10	23	10	23	10	23	10	23
15,000	8.3	19	10	23	12	27	13	30	15	35	15	35	15	35	15	35	15	35	15	35	15	35
20,000	9.1	21	11	25	13	29	14	33	17	39	20	46	20	46	20	46	20	46	20	46	20	46
25,000	9.8	23	12	27	13	31	15	35	18	42	22	50	25	58	25	58	25	58	25	58	25	58
30,000	10	24	13	29	14	33	16	37	20	45	23	53	29	66	30	69	30	69	30	69	30	69
35,000	11	25	13	30	15	35	17	39	20	47	24	56	30	69	35	81	35	81	35	81	35	81
40,000	12	27	14	32	16	37	18	41	21	49	25	58	31	72	36	83	40	92	40	92	40	92
50,000	13	29	15	34	17	40	19	44	23	53	27	63	34	78	39	89	48	111	50	115	50	115
60,000	13	30	16	36	18	42	20	47	25	57	29	67	36	83	41	94	51	118	60	138	60	138
80,000	14	33	17	40	20	46	23	52	27	62	32	73	40	91	45	104	57	130	67	153	77	176
100,000	16	36	19	43	22	50	24	56	29	67	34	79	43	98	49	112	61	140	72	165	83	190
150,000	18	41	21	49	25	57	28	64	33	77	39	90	49	112	56	128	70	160	82	189	94	217
200,000	20	45	24	54	27	63	31	71	37	84	43	100	53	123	61	141	77	176	90	208	104	239

The current limiting effect of A4BQ Class L fuses is presented in the table above. This table correlates actual fuse peak let-thru currents with equal value peak currents reached in the first half cycle (worst case) of short circuits in unfused circuits. The let-thru current is expressed as "Apparent RMS Symmetrical Amperes" in order to be more useful for practical applications. The currents are based on an assumed 15% power factor.


Example: An A4BQ1200, when applied in a circuit with 40,000 RMS symmetrical amperes available, will limit that current during a short circuit, to an apparent 18,000 RMS symmetrical amperes. Under this condition, any equipment being protected would be subjected to only 18,000 RMS amperes.

IPD INDUSTRIAL PRODUCTS

Phone: 1300 556 601


www.ipdgroup.com.au

Melting time - current data

600V Fuses

OTHER IPD FUSEGEAR PRODUCTS

Red spot Fuse Fittings up to 660V AC

- World leading Red Spot quality
- Smallest BS88 bolt-in fuse holders available
- Fully shrouded for personal safety
- Current ratings 20 to 400A

Safe Clip up to 550V AC

- 32A and 63A to suit NS and ES fuse series
- Fuse carrier moulded from tough flame retardant material with Integral DIN rail mounting
- Full shrouding and complete compliance with the direct contact electric shock requirements.

MV Fuse-links and bases up to 36kV

- Back-up fuse-links for the short circuit protection of distribution transformers
- From 1A up to 200A

Service Fuses and Fittings up to 500V AC

- 100A for Domestic and Light Commercial
- Front wire and Back wire with intrusion barriers if required
- Fuse from 20A up to 100A

Semiconductor Fuses up to 1250V AC

- BS88 Part 4
- UL American Pattern
- DIN Square body

Modular Fuses and Fittings up to 690V AC

- Fuse fittings available in 32A, 50A & 125A ratings
- Fuse-links 05.A up 125A
- DIN rail mountable to standard DIN profile
- Conform to IEC269-2.

Traction Fuses and Fittings

- BS pattern 1200V AC traction fuse-links from 2A up to 400A
- DIN square body 1200V AC from 2A up to 500A
- US ferrule 1500V fuses and bases up to 63A

HENLE

Tel: 1300 556 601 Fax: 1300 550 187 www.ipdgroup.com.au

